Sample Constructions

Rated voltages $U_o/U = 76/132 \text{ kV}$ $U_m = 145 \text{ kV}$ $U_p = 650 \text{ kV}$ Rated temperatures

- Maximum permissible temp. of conductor in continuous use 90°C
- Maximum permissible temp. of conductor in short-circuit 250°C (for durations up to 5 sec.)

Standard IEC 60840

145 kV Cables 76/132 kV Single core, XLPE-insulated high voltage power cables

Nominal cross	lominal cross-sectional area of conductor					500	800	1200	1600	2000
Construct	tional data									
Outer diameter With aluminium conductor With copper conductor				mm mm	74 74	82 83	92 94	99 102	105 109	
Net weight	Net weight With aluminium conductor with Pb sheath With copper conductor				kg/km kg/km	10100	13000 18500	16500 24500	19000	22000 35500
Recommended minimum bending radius during laying					m m	1.3	1.5	1.7	1.8	1.9
Electrical	properties a	t 132 kV and 5	0 Hz							
	Maximum DC-re	sistance		at 20°C	$\Omega/{\rm km}$	0.0605	0.0367	0.0247	0.0186	0.0149
Aluminium conductor	Effective-	Flat	Conductor	20°C	Ω/km	0.089	0.070	0.064	0.061	0.062
	resistance, screens bonded at both ends	formation	temperature	65°C	Ω/km	0.097	0.073	0.064	0.060	0.060
				90°C	Ω/km	0.101	0.074	0.064	0.060	0.059
conductor		Trefoil	Conductor	20°C	$\Omega/{\rm km}$	0.070	0.048	0.039	0.034	0.032
		formation	temperature	65°C	Ω/km	0.080	0.053	0.042	0.036	0.034
	Dotti ellus			90°C	Ω/km	0.085	0.056	0.043	0.037	0.034
·	Maximum DC-re	sistance		at 20°C	$\Omega/{ m km}$	0.0366	0.0221	0.0151	0.0113	0.0090
	Effective-	Flat	Conductor	20°C	Ω/km	0.065	0.057	0.052	0.052	0.054
Copper	resistance,	formation	temperature	65°C	Ω/km	0.068	0.057	0.051	0.050	0.051
conductor	screens			90°C	$\Omega/{\rm km}$	0.070	0.057	0.050	0.048	0.049
7,7,11,7,7,7,7,7,7,7	bonded at	Trefoil	Conductor	20°C	Ω/km	0.046	0.035	0.025	0.023	0.022
	both ends	formation	temperature	65°C	Ω/km	0.052	0.037	0.027	0.024	0.022
	both ends			90°C	$\Omega/{\rm km}$	0.055	0.039	0.028	0.024	0.022
DC-resistance	of metallic screen	at 20°C approx.			$\Omega/{ m km}$	0.51	0.42	0.34	0.30	0.26
	Flat formation					0.58	0.55	0.53	0.52	0.51
Inductance Trefoil formation					mH/km	0.39	0.36	0.35	0.33	0.32
Operating cap	Operating capacitance				μF/km	0.20	0.25	0.30	0.30	0.35
Charging curre	Charging current					4.6	5.5	6.7	7.5	8.2

Continuous	current-carrying	capacities
------------	------------------	------------

Conductor	Cables laid	Conductor temperature	Laying formation	Screen circuit						
			Flat	Open	Α	570	745	905	1030	1135
	la.	65°C		Closed	Α	515	620	685	725	745
	Ind		Trefoil	Open	Α	540	695	830	925	1000
	ground of 15°C			Closed	Α	530	670	780	855	905
	01 15 C		Flat	Open	Α	675	885	1075	1230	1355
Aluminium		90°C		Closed	Α	615	750	840	895	920
			Trefoil	Open	Α	640	825	990	1110	1200
				Closed	Α	630	800	935	1035	1100
	la etc		Flat	Open	Α	915	1235	1520	1770	1980
	In air	90°C		Closed	Α	845	1075	1230	1345	1415
	of 25°C		Trefoil	Open	Α	815	1085	1325	1520	1680
<u>.</u>				Closed	Α	805	1070	1300	1490	1635
	T.	65°C	Flat	Open	Α	725	935	1190	1375	1530
				Closed	Α	620	720	790	820	825
	In		Trefoil	Open	Α	685	860	1085	1230	1330
	ground of 15°C	<u> </u>		Closed	Α	660	810	985	1075	1130
	01 12 C		Flat	Open	Α	860	1110	1410	1635	1825
Copper		90°C		Closed	Α	750	875	970	1015	1030
			Trefoil	Open	Α	810	1025	1290	1470	1600
				Closed	Α	790	975	1185	1310	1380
	La de		Flat	Open	Α	1165	1555	1990	2360	2655
	In air	90°C		Closed	Α	1035	1265	1450	1565	1620
	of 25°C		Trefoil	Open	Α	1030	1350	1745	2035	2260
				Closed	Α	1020	1325	1650	1895	2075

Aluminium conductor	kA	47.2	75.6	113.4	151.2	189.1
Copper conductor	kA	71.4	114.2	171.4	228.5	285.7

Sample Constructions

Rated voltages $U_o/U = 89/154 \text{ kV}$ $U_{\rm m} = 170 \text{ kV}$ $U_{\rm n} = 750 \text{ kV}$

 $U_p = 750 \text{ kV}$ Rated temperatures

- Maximum permissible temp. of conductor in continuous use 90°C
- Maximum permissible temp. of conductor in short-circuit 250°C (for durations up to 5 sec.)

Standard IEC 60840

170 kV Cables 89/154 kV Single core, XLPE-insulated high voltage power cables

Nominal	cross-sectional area o	f conductor			mm ²	500	800	1200	1600	2000
Nominal	cross-sectional area o	f screen			mm ²	95	95	95	95	95
Constr	uctional data									
Outer dia	Outer diameter With aluminium conductor				mm	80	88	97	104	110
		With copper cor	ductor		mm	80	89	100	107	114
Net weig	Net weight With aluminium conductor				kg/km	6150	7700	9600	11500	13000
with Cu screen With copper conductor				kg/km	9300	13500	18000	22000	26500	
Recomm	Recommended minimum bending radius during laying				m	1.6	1.8	2.0	2.1	2.3
Electri	cal properties a	t 154 kV and	50 Hz							
	Maximum DC-re	esistance		at 20°C	$\Omega/{\rm km}$	0.0605	0.0367	0.0247	0.0186	0.0149
	Effective-	Flat	Conductor	20°C	$\Omega/{\rm km}$	0.118	0.095	0.084	0.079	0.079
		formation	temperature	65°C	Ω/km	0.126	0.098	0.085	0.079	0.079
Aluminiu conduct				90°C	Ω/km	0.131	0.101	0.086	0.079	0.079
conduct	bonded at	Trefoil	Conductor	20°C	Ω/km	0.081	0.058	0.048	0.043	0.043
	both ends formation tem		temperature	65°C	Ω/km	0.090	0.062	0.049	0.043	0.043
	Dotti enus			90°C	$\Omega/{ m km}$	0.095	0.065	0.051	0.044	0.044
	Maximum DC-re	esistance		at 20°C	$\Omega/{\sf km}$	0.0366	0.0221	0.0151	0.0113	0.0090
			Conductor	20°C	Ω/km	0.094	0.081	0.072	0.068	0.066
Conner	Effective- formation temperature			65°C	Ω/km	0.097	0.082	0.072	0.068	0.065

90°C

20°C

65°C

90°C

Conductor

temperature

 Ω/km

 Ω/km

 Ω/km

 Ω/km

 Ω/km

mH/km

mH/km

μF/km

A/km

0.099

0.057

0.061

0.064

0.20

0.60

0.41

0.17

4.7

0.083

0.045

0.046

0.047

0.20

0.57

0.38

0.20

5.6

0.072

0.035

0.035

0.036

0.20

0.55

0.36

0.24

6.8

0.067

0.031

0.031

0.031

0.20

0.53

0.35

0.27

7.5

0.065

0.029

0.029

0.029

0.20

0.52

0.33

0.29

8.2

Continuous current-carrying capacities

Trefoil

formation

Flat formation

Trefoil formation

resistance,

screens

bonded at

both ends

DC-resistance of metallic screen at 20°C approx.

Copper

conductor

Inductance Operating capacitance

Charging current

Conductor	Cables laid	Conductor temperature	Laying formation	Screen circuit						
			Flat	Open	Α	575	750	905	1035	1135
		65°C		Closed	A	465	550	610	650	675
	In		Trefoil	Open	A	540	690	815	910	985
	ground			Closed	A	510	630	730	795	845
	of 15°C		Flat	Open	A	680	885	1075	1235	1360
Aluminium		90°C		Closed	A	560	665	745	795	830
			Trefoil	Open	A	640	820	975	1095	1185
				Closed	A	605	760	880	970	1035
	In air		Flat	Open	Α	915	1235	1515	1765	1980
	of 25°C	90°C		Closed	Α	790	980	1125	1235	1325
	01 23 C		Trefoil	Open	Α	820	1085	1320	1515	1675
				Closed	A	790	1025	1225	1385	1510
	In	65°C	Flat	Open	Α	725	935	1190	1375	1530
				Closed	Α	535	610	680	715	740
	ground		Trefoil	Open	Α	670	845	1055	1185	1290
	of 15°C			Closed	Α	620	745	885	960	1020
	01 13 C		Flat	Open	Α	855	1115	1410	1635	1825
Copper		90°C		Closed	Α	650	750	830	880	915
			Trefoil	Open	Α	800	1010	1265	1430	1555
				Closed	A	740	900	1075	1175	1250
	In air		Flat	Open	Α	1145	1550	1985	2340	2640
		90°C		Closed	Α	925	1120	1295	1410	1495
	of 25°C		Trefoil	Open	Α	1020	1345	1725	2005	2225
				Closed	Α	965	1240	1535	1735	1890

Aluminium conductor	kA	47.2	75.6	113.4	151.2	189.1
Copper conductor	kA	71.4	114.2	171.4	228.5	285.7

Sample Constructions

Rated voltages $U_o/U = 127/220 \text{ kV}$ $U_m = 245 \text{ kV}$ $U_p = 1050 \text{ kV}$

 $U_p = 1050 \text{ kV}$ Rated temperatures

- Maximum permissible temp. of conductor in continuous use 90°C
- Maximum permissible temp. of conductor in short-circuit 250°C (for durations up to 5 sec.) Standard IEC 62067

Charging current

245 kV Cables 127/220 kV Single core, XLPE-insulated high voltage power cables

10.0

Standard IEC	02007									
Nominal cros	s-sectional area of	f conductor			mm ²	500	800	1200	1600	2000
Nominal cros	s-sectional area of	f screen			mm ²	95	95	95	95	95
Construct	ional data									
Outer diamet	er	With aluminium co	nductor		mm	91	98	106	113	119
		With copper cond	uctor		mm	91	100	108	115	122
Net weight		With aluminium co	nductor		kg/km	7500	9000	11000	13000	14500
with Cu scree	n	With copper cond	uctor		kg/km	11000	15000	19000	23500	28000
Recommended minimum bending radius during laying					m	1.8	2.0	2.2	2.3	2.4
Electrical	properties a	t 220 kV and 5	0 Hz							
Maximum DC-resistance at 20°C					$\Omega/{\rm km}$	0.0605	0.0367	0.0247	0.0186	0.0149
	Effective- resistance, screens bonded at	Flat	Conductor	20°C	Ω/km	0.120	0.097	0.085	0.080	0.077
Aluminium		formation	temperature	65°C	Ω/km	0.127	0.100	0.086	0.080	0.076
conductor				90°C	$\Omega/{\sf km}$	0.132	0.102	0.087	0.080	0.076
		Trefoil	Conductor	20°C	Ω/km	0.083	0.060	0.049	0.043	0.040
	both ends	formation	temperature	65°C	Ω/km	0.091	0.063	0.050	0.044	0.040
	000000000000000000000000000000000000000			90°C	$\Omega/{\sf km}$	0.096	0.066	0.052	0.045	0.041
	Maximum DC-re			at 20°C	$\Omega/{\sf km}$	0.0366	0.0221	0.0151	0.0113	0.0090
	Effective-	Flat	Conductor	20°C	Ω/km	0.096	0.079	0.073	0.069	0.067
Copper	resistance,	formation	temperature	65°C	Ω/km	0.099	0.080	0.073	0.068	0.066
conductor	screens		100 VI	90°C	Ω/km	0.101	0.081	0.073	0.068	0.065
	bonded at	Trefoil	Conductor	20°C	Ω/km	0.059	0.042	0.035	0.032	0.030
	both ends	formation	temperature	65°C	Ω/km	0.062	0.043	0.036	0.031	0.029
				90°C	Ω/km	0.065	0.045	0.036	0.031	0.029
DC-resistance	e of metallic scree				Ω/km	0.20	0.20	0.20	0.20	0.20
		Flat formation			mH/km	0.62	0.58	0.56	0.54	0.53
Inductance Trefoil formation					mH/km	0.44	0.40	0.38	0.36	0.35
Operating cap	Operating capacitance				μF/km	0.14	0.18	0.21	0.23	0.25

Continuous current-carrying capacities

Conductor	Cables laid	Conductor temperature	Laying formation	Screen circuit						
			Flat	Open	Α	565	730	890	1015	1115
	L.	65°C		Closed	Α	460	540	600	640	665
	In		Trefoil	Open	Α	525	670	800	895	965
	ground of 15°C			Closed	Α	500	615	715	780	830
	01 15 C		Flat	Open	Α	665	865	1060	1215	1340
Aluminium		90°C		Closed	Α	555	655	735	785	820
			Trefoil	Open	Α	625	800	960	1080	1170
				Closed	Α	595	740	865	950	1015
	In air		Flat	Open	Α	875	1160	1450	1690	1890
	of 25°C	90°C		Closed	Α	760	935	1085	1190	1270
	01 23 C		Trefoil	Open	Α	795	1040	1285	1475	1625
				Closed	Α	770	985	1195	1350	1470
			Flat	Open	Α	715	955	1170	1350	1500
	In	65°C		Closed	Α	535	620	670	705	730
	ground		Trefoil	Open	Α	660	865	1030	1160	1255
	of 15°C	9		Closed	Α	610	760	865	945	1000
	01 13 C		Flat	Open	Α	850	1135	1390	1610	1795
Copper		90°C		Closed	Α	645	755	825	870	905
			Trefoil	Open	Α	790	1035	1235	1400	1525
	<u> </u>			Closed	Α	730	920	1055	1160	1230
	In air		Flat	Open	Α	1115	1520	1895	2235	2510
	of 25°C	90°C		Closed	Α	905	1105	1250	1355	1430
	01 23 C		Trefoil	Open	Α	1005	1355	1670	1940	2150
				Closed	Α	955	1250	1495	1690	1835

Aluminium conductor	kA	47.2	75.6	113.4	151.2	189.1
Copper conductor	kA	71.4	114 2	171.4	228 5	285.7

Sample Constructions

Rated voltages $U_o/U = 200/345 \text{ kV}$ $U_m = 362 \text{ kV}$ $U_p = 1175 \text{ kV}$ Rated temperatures

- Maximum permissible temp. of conductor in continuous use 90°C
- Maximum permissible temp. of conductor in short-circuit 250°C (for durations up to 5 sec.) Standard IEC 62067

Charging current

362 kV Cables 200/345 kV Single core, XLPE-insulated high voltage power cables

Stalluaru IEC	02007									
Nominal cros	s-sectional area o	f conductor			mm ²	630	800	1200	1600	2000
Nominal cros	s-sectional area o	f screen			mm ²	95	95	95	95	95
Construct	ional data									
Outer diamet	er	With aluminium co	onductor		mm	111	112	115	122	128
		With copper cond	uctor		mm	111	112	117	124	131
Net weight		With aluminium co	onductor		kg/km	11000	11500	12500	14500	16000
with Cu scree	en	With copper cond	uctor		kg/km	15000	16500	20500	25000	29500
Recommende	d minimum bending	g radius during laying			m	2.2	2.2	2.3	2.5	2.6
Electrical	properties a	t 345 kV and 5	0 Hz							
Maximum DC-resistance				at 20°C	$\Omega/{\rm km}$	0.0469	0.0367	0.0247	0.0186	0.0149
	Maximum DC-res Effective- inium resistance,	Flat	Conductor	20°C	Ω/km	0.110	0.100	0.089	0.083	0.080
Altt		formation	temperature	65°C	Ω/km	0.114	0.102	0.089	0.082	0.079
Aluminium conductor		<u></u>		90°C	$\Omega/{\sf km}$	0.118	0.105	0.090	0.083	0.079
conductor		Trefoil	Conductor	20°C	Ω/km	0.072	0.062	0.051	0.046	0.042
	both ends	formation	temperature	65°C	Ω/km	0.077	0.065	0.052	0.045	0.042
				90°C	Ω/km	0.081	0.068	0.053	0.046	0.042
	Maximum DC-re	esistance		at 20°C	$\Omega/{\sf km}$	0.0283	0.0221	0.0151	0.0113	0.0090
	Effective-	Flat	Conductor	20°C	Ω/km	0.091	0.083	0.076	0.072	0.070
Copper	resistance,	formation	temperature	65°C	Ω/km	0.092	0.083	0.075	0.070	0.068
conductor	screens			90°C	Ω/km	0.093	0.084	0.075	0.070	0.068
	bonded at	Trefoil	Conductor	20°C	Ω/km	0.053	0.044	0.037	0.034	0.032
	both ends	formation	temperature	65°C	Ω/km	0.055	0.045	0.037	0.032	0.030
				90°C	Ω/km	0.057	0.046	0.037	0.033	0.030
DC-resistance	e of metallic scree				Ω/km	0.20	0.20	0.20	0.20	0.21
		Flat formation			mH/km	0.64	0.61	0.58	0.56	0.55
Inductance Trefoil formation			mH/km	0.45	0.42	0.39	0.38	0.36		
	Operating capacitance				μF/km	0.13	0.16	0.18	0.20	0.22
Chausins access					A /1	0.7	0.0	110	177	120

Continuous current-carrying capacities

Conductor	Cables laid	Conductor temperature	Laying formation	Screen circuit						
			Flat	Open	Α	635	715	870	995	1090
	la.	65°C		Closed	Α	500	535	595	630	655
	In		Trefoil	Open	Α	590	660	785	875	945
	ground of 15°C	<u></u>		Closed	Α	550	605	700	765	815
	01 13 C		Flat	Open	Α	760	855	1045	1195	1320
Aluminium		90°C		Closed	Α	605	655	730	780	815
			Trefoil	Open	Α	705	790	945	1065	1155
				Closed	Α	665	735	855	940	1005
	In air		Flat	Open	Α	990	1125	1420	1650	1845
	of 25°C	90°C		Closed	Α	845	925	1080	1185	1265
	01 23 C		Trefoil	Open	Α	905	1020	1265	1455	1605
				Closed	Α	870	975	1180	1335	1460
	In	1001117	Flat	Open	Α	805	935	1140	1320	1460
		65°C		Closed	Α	570	610	665	695	720
	ground		Trefoil	Open	Α	735	845	1005	1130	1225
	of 15°C			Closed	Α	665	745	850	925	975
	01 13 C		Flat	Open	Α	960	1120	1370	1585	1765
Copper		90°C		Closed	Α	695	750	820	865	895
			Trefoil	Open	Α	880	1020	1215	1375	1495
				Closed	Α	805	905	1045	1145	1215
	In air		Flat	Open	Α	1250	1480	1855	2185	2455
	of 25°C	90°C		Closed	Α	995	1100	1250	1360	1435
	01 23 C		Trefoil	Open	Α	1135	1335	1645	1910	2120
				Closed	Α	1070	1235	1480	1675	1825

Aluminium conductor	kA	59.5	75.6	113.4	151.2	189.1
Copper conductor	kA	90.0	114.2	171.4	228.5	285.7

Sample Constructions

Rated voltages $U_o/U = 220/400 \text{ kV}$ $U_m = 420 \text{ kV}$ $U_p = 1425 \text{ kV}$ Rated temperatures

- Maximum permissible temp. of conductor in continuous use 90°C
- Maximum permissible temp. of conductor in short-circuit 250°C (for durations up to 5 sec.)

420 kV Cables 220/400 kV Single core, XLPE-insulated high voltage power cables

Standard IEC	52067								
Nominal cross	-sectional area of	conductor		mm ²	800	1000	1200	1600	
Nominal cross	-sectional area of	screen			mm²	95	95	95	95
Construc	tional data								
Outer diamete	r	With aluminium co	onductor		mm	123	124	124	127
<u> </u>		With copper cond	uctor		mm	122	123	125	128
Net weight		With aluminium co	onductor		kg/km	13000	13500	14000	15500
with Cu scree	1	With copper cond	uctor		kg/km	18500	20500	22000	26000
Recommended	minimum bending	radius during laying			m	2.4	2.5	2.5	2.6
Electrical	properties a	at 400 kV and 5	0 Hz						
	Maximum DC-re	esistance		at 20°C	$\Omega/{\sf km}$	0.0367	0.0291	0.0247	0.0186
	m resistance, for	Flat	Conductor	20°C	$\Omega/{\sf km}$	0.101	0.094	0.090	0.085
Aluminium		formation	temperature	65°C	Ω/km	0.103	0.095	0.090	0.083
conductor		<u>-</u>		90°C	$\Omega/{\sf km}$	0.106	0.096	0.091	0.084
		Trefoil	Conductor	20°C	Ω/km	0.063	0.056	0.052	0.047
	both ends	formation	temperature	65°C	Ω/km	0.066	0.057	0.052	0.046
	both chas			90°C	$\Omega/{\sf km}$	0.069	0.059	0.054	0.047
	Maximum DC-re	esistance		at 20°C	$\Omega/{\sf km}$	0.0221	0.0176	0.0151	0.0113
	Effective-	Flat	Conductor	20°C	Ω/km	0.084	0.079	0.077	0.074
Copper	resistance,	formation	temperature	65°C	Ω/km	0.084	0.078	0.076	0.071
conductor	screens			90°C	Ω/km	0.084	0.079	0.076	0.071
	bonded at	Trefoil	Conductor	20°C	Ω/km	0.045	0.040	0.038	0.035
both ends formation temperatu				65°C	Ω/km	0.046	0.040	0.038	0.033
				90°C	Ω/km	0.047	0.041	0.038	0.033
DC-resistance	of metallic screen	• • • • • • • • • • • • • • • • • • • •			Ω/km	0.20	0.20	0.20	0.21
		Flat formation			mH/km	0.62	0.60	0.59	0.57
Inductance		Trefoil formation			mH/km	0.44	0.42	0.41	0.38
Operating cap	acitance				μF/km	0.14	0.16	0.17	0.19

A/km

10.3

11.5

12.3

14.0

Continuous current-carrying capacities

Charging current

Conductor	Cables laid	Conductor temperature	Laying formation	Screen circuit					
			Flat	Open	Α	715	800	865	980
	L.	65°C		Closed	Α	540	570	595	625
	In		Trefoil	Open	Α	660	725	775	865
	ground	<u> </u>		Closed	Α	605	660	700	760
	of 15°C		Flat	Open	Α	855	960	1040	1185
Aluminium		90°C		Closed	Α	655	700	730	775
			Trefoil	Open	Α	790	875	940	1055
				Closed	Α	735	805	855	935
	In air		Flat	Open	Α	1125	1265	1390	1630
	of 25°C	90°C		Closed	Α	935	1015	1080	1185
	01 25 C		Trefoil	Open	Α	1025	1150	1250	1440
				Closed	Α	980	1090	1175	1330
			Flat	Open	Α	930	1045	1130	1300
	In	65°C		Closed	Α	615	645	660	690
	ground		Trefoil	Open	Α	840	930	995	1115
	of 15°C	<u> </u>		Closed	Α	740	805	840	910
	01 13 C		Flat	Open	Α	1110	1255	1360	1570
Copper		90°C		Closed	Α	755	795	820	860
			Trefoil	Open	Α	1010	1130	1210	1365
	<u> </u>			Closed	Α	905	985	1035	1135
	In air		Flat	Open	Α	1450	1670	1825	2160
	of 25°C	90°C		Closed	Α	1100	1195	1250	1355
	01 25 C		Trefoil	Open	Α	1320	1500	1630	1895
				Closed	Α	1230	1375	1470	1665

Aluminium conductor	kA	75.6	94.5	113.4	151.2
Copper conductor	kA	114.2	142.8	171.4	228.5

Using the tables

The electrical properties and continuous current ratings apply for lead sheathed cables with our normal sheath thickness. The thickness of sheath and especially the cross-section of copper screen can be adjusted according to the required short circuit rating of sheath or screen.

Where loading is cyclic, appreciable increase in current capacities may be justified. Refer to IEC Publication 60853 for calculation of the cyclic ratings.

In cable circuits having no magnetic saturating materials the positive and negative sequence impedances are equal and can be deduced from the tabulated effective resistance and inductance values corrected as required for frequencies other than 50 Hz.

Zero sequence impedance for solidly bonded systems can be roughly estimated as the sum of the resistances of conductor and sheath and a reactance of 0.05 to 0.1 ohms/km depending on the proportion of diameters of sheath and conductor at 50 to 60 Hz. For single point bonded systems the zero sequence impedance depends on the ground wires and any other grounded metallic objects along the cable route.

Selecting a power cable

Different kinds of power cable constructions are required to transport electrical energy from the power station to the consumer.

The following factors are important when selecting a suitable cable construction:

- Maximum operating voltage
- Insulation level
- Frequency
- · Load to be carried
- · Daily load curve
- Magnitude and duration of possible overloads currents phase-to-phase and phase-to-earth
- Connection between overhead and cable line (whether directly or via a transformator)
- Insulation level of equipment (bareconductor insulators, arresters, etc.)
- · Voltage drop
- · Length of line
- Profile of line

- Mode of installation:
 - underground (whether directly or in ducts)
 - in air (if in a tunnel, the dimensions and mode of ventilation of the tunnel)
- Chemical and physical properties of the soil:
 - whether rocky, sandy, clay or boggy; moist or dry
 - chemical agents liable to cause corrosion etc.
 - the maximum thermal resistivity of the soil
- Maximum and minimum ambient air and soil temperatures, bearing in mind nearby hotwater pipes and other factors liable to heat the cables
- Specifications and requirements to be met
- The cable should be economical to use; an optimum cross-sectional area can be calculated based on the capital costs of the cable and its running costs incurred by the power losses in the cable

4

Voltages	Rated voltage The voltage which forms the basis for certa operating characteristics and test condition called the rated voltage and is denoted		or in any part of the network, excluding temporary fluctuations such as those occuring during switching or faults.
	U _o /U where U _o = the voltage between the conductor ar earth or earthed metallic cover (concentric conductor, screen,	nd	Relationship between U_{o}/U and U_{m} in three phase systems are as follows according to IEC specifications:
	armouring, metal sheath) U = the voltage between the phase condu	ctors	U _o /U kV 36/66 64/110 76/132 127/220 190/345 220/400 U _m kV 72.5 123 145 245 362 420
	Operating voltage U_m = the maximum continuously permissible operating voltage of the network at any time.	e	and according to USA Standard C-84: 1-1995 U_\()/U kV\) 40/69 66/115 80/138 132/230 200/345 U_\(\) kV\) 72.5 121 145 242 362
Complete System Supply	It is essential that the accessories and cable type-tested together forming a complete sy We supply a full range of accessories and fit for the splicing and terminating as well as t	rstem. ttings	and equipment, complete with instructions for installation. We also provide planning and supervision of the complete system packages.
Standards	The cables described in this catalogue are of standard types, and their performance has proven in operation.		Construction and tests are in accordance with IEC publications where applicable.
Custom designed cables	Power cables ranging from 72.5 kV to 420 can be manufactured also according to oth standards (eg. AEIC, VDE, BS, SEN), regular or specifications in-line with the customers requirements.	er tions	
Circular Mils	In American standards the cross section ar is expressed in Circular Mils Ac.	ea	$A = \frac{Ac}{1973.5} mm^2$
	Cross–Sections in $\mathbf{m}\mathbf{m}^2$ converted into Circular M	Nils	
	mm² 185 300 500 800 1200 1600 20 kcmil 365 590 990 1580 2370 3160 39		
Weights and dimensions	Weights, dimensions and characteristic dat are approximate. Deviations due to different constructions are reserved.	ia	

Our standard embossed or surface printed outer sheath marking on round cables consists of:

- name of manufacturer
- type designation, cross-sectional area of conductor, rated voltage and year of manufacture

 continuous length marking every meter or every few feet. Sheath marking

Laying

information

Resistances

Example:

AHXLMK 1x300 mm² 132 kV 2006 1234 m

Minimum permissible bending radii during laying:

- during pulling of power cables, the bending radii should not be smaller than the values given on pages 8-14
- in the case of single bends, the above values may be reduced to a min. of 70% if the cables are carefully and evenly bent only once before a termination (around a prefabricated bow, if necessary).

Max. permissible pulling tension during laying:

- during laying of power cables particular attention must be paid to the permissible tensile forces
- permissible tensile forces when pulling by cable pulling grip:
 F = A x 15 N/mm²
 (cable with Al-conductor)
 F = A x 20 N/mm²
 (cable with Cu-conductor)
 maximum value in both cases is 8500 N

 maximum recommended tensile forces when pulling eye is attached to the conductor:

Al-conductors; $\leq 800 \text{ mm}^2$, F = A x 70 N/mm² > 800 mm², F = A x 50 N/mm²

 $> 800 \text{ mm}^2$, F = A x 50 N/mm² Cu-conductors; $\leq 800 \text{ mm}^2$, F = A x 90 N/mm² $> 800 \text{ mm}^2$, F = A x 70 N/mm²

A = cross-sectional area of conductor in mm² (without screen and conc. conductor)

Minimum permissible cable temperature during laying:

 XLPE insulated cables U > 30 kV; -5°C for HFFR and PVC-sheath, -15°C for PE-sheath. At lower temperature the cables must be adequately warmed up beforehand. This can be done by storing the cables in a heated room for several days or by means of special equipment.

Direct Current resistance

The maximum DC resistance values of conductors at 20°C are shown in cable standards.

The DC resistance at other conductor temperatures may be calculated using the equation:

$$R = R_{20} [1 + \alpha_{20} (t - 20^{\circ}C)]$$

R= DC resistance at temperature t, Ω/km

 R_{20} = DC resistance of cond. at 20°C, Ω /km

t = temperature of conductor, °C

 $\alpha_{\rm 20}$ = temperature coefficient of the resistance at 20°C, 1/°C

 $\begin{array}{ll} \text{for copper conductors} & \alpha_{\text{20}} = 0.00393 \\ \text{for Al. cond. and sheath} & \alpha_{\text{20}} = 0.00403 \\ \text{for lead alloy sheath} & \alpha_{\text{20}} = 0.00400 \end{array}$

On pages 8-14 are given:

- maximum DC resistance of conductors at 20°C (in accordance with IEC 60228)
- calculated DC resistance of metallic sheaths and metallic screens at 20°C

Effective resistance

The effective resistance (= alternating current resistance) is made up of the DC resistance and the extra resistance, which takes into account additional losses caused by the current displacement in the conductor (skin effect, proximity effect), dielectrical losses in insulation circulating currents in the metal sheath or screen and eddy currents as well as magnetic reversal in

On pages 8-14 are given effective resistance of conductors at 20°C and at maximum conductor temperature. They are based on the following presumptions:

• frequency 50 Hz

the armour.

- · closed screen circuit
- · distance between single core cables
 - in case of flat formation = one cable diam.
 - in case of trefoil formation = cables touching each other.

The values for the inductance of single core cables have been calculated based on the following presumptions:

• open screen circuit

distance between single core cables

- in case of flat formation = one cable diam.

- in case of trefoil formation = cables touching each other.

The values for the operating capacitance of the cables are average values based on measurements and calculations.

The values for the charging current are valid at a temperature of 20° C, at a frequency of 50 Hz and at a rated voltage of the cable.

The values of capacitance, charging current and earth fault current will not change when using XLPE insulated cables when the temperature increases from 20°C to the maximum permissible continuous conductor temperature.

Operating capacitance, charging current and earth fault current

Inductance

carrying capacity

Continuous A separate group of three single core cables can be continuously loaded according to the tables on pages 8 to 14 if the presumptions below are fulfilled. Correction factors for other installations are given in tables 1-7.

> The current-carrying capacities are calculated in accordance with the IEC Publication 60287 and under the presumptions given below.

Presumptions

- One three-phase group of single core cables
- Maximum permissible temperature of inner conductor in continuous use:
- 90°C XLPE insulated cables Ambient air temperature 25°C
- Ground temperature 15°C
- Depth of laying of cables 1.0 m
- Distance between single core cables:
 - in case of flat formation = one cable diam.
 - in case of trefoil formation = cables touching
- Thermal resistivity of soil 1.0 K m/W
- Cable in air = heat dissipation conditions same as if cables in free air.
- Open screen circuit in single core cable group = circuit of metal sheaths, concentric conductors or metallic screens connected

to each other and earthed at one point only = screens bonded at a single point. In addition, screen circuit is considered open when cross-bonded at equal interval.

Closed screen circuit in single core cable group = circuit of metal sheaths, concentric conductors or metallic screens connected to each other at both ends of the group and earthed at least at one end = screens bonded at both ends.

XLPE-insulated cables buried directly in ground XLPE-insulated cables can continuously be loaded to a conductor temperature of 90°C.

In underground installations, if a cable in the ground is continuously operated at this highest rated conductor temperature, the thermal resistivity of the soil surrounding the cable may in the course of time increase from its original value as a result of the drving-out processes. As a consequence. the conductor temperature may greatly exceed the highest rated value.

Using single-point bonding or cross-bonding instead of both-end bonding results in considerable increase in current carrying capacity.

Shortcircuit current capacity When planning cable installations, care has to be taken that the cables and fittings chosen are capable of withstanding the expected dynamic and thermal short-circuit stresses.

The dynamic stresses depend on the max. asymmetric short-circuit current and the thermal stresses on the mean short-circuit current.

Dynamic stresses

Spacing between

Generally cables and their standard accessories will withstand the dynamic stresses under shortcircuit conditions, but near the power stations it is important to take into consideration the dynamic short-circuit current capacity and to pay attention to the technique of installation.

Thermal stresses

On pages 8 to 14 are given the max. permissible short-circuit currents for short-circuit duration of one second and the values are based on the following presumptions:

- before short-circuit the temperature of conductors = max. permissible temperature of conductor in continuous use
- max, permissible temperature of conductor in short-circuit is 250°C for XLPE-insulated cables
- the permissible short-circuit currents for short-circuit duration of 0. 2 up to 5 seconds may be calculated by multiplying the value of max. permissible short-circuit current for shortcircuit duration of one second by the figure $1/\sqrt{t}$, where t is the duration of short-circuit in seconds.

carrying capacity

Correction The following tables of correction factors are to factors for be applied to the current-carrying capacity when the current- installation conditions vary from the presumptions above.

The rating for most conditions can be quickly estimated by multiplying the continuous currentcarrying capacity value by the correction factors given in the appropriate tables 1-7.

Table 1. Correction factors for groups of cables buried directly in ground

spacing between		Numbers of groups of single core cables beside each other								
groups of cables, mm	2	3	4	5	6	8	10			
0 (touching)	0.79	0.69	0.63	0.58	0.55	0.50	0.46			
70	0.85	0.75	0.68	0.64	0.60	0.56	0.53			
250	0.87	0.79	0.75	0.72	0.69	0.66	0.64			
	groups of cables, mm 0 (touching) 70	groups of cables, mm 2 0 (touching) 0.79 70 0.85	groups of cables, mm 2 3 0 (touching) 0.79 0.69 70 0.85 0.75	groups of cables, mm 2 3 4 0 (touching) 0.79 0.69 0.63 70 0.85 0.75 0.68	groups of cables, mm 2 3 4 5 0 (touching) 0.79 0.69 0.63 0.58 70 0.85 0.75 0.68 0.64	groups of cables, mm 2 3 4 5 6 0 (touching) 0.79 0.69 0.63 0.58 0.55 70 0.85 0.75 0.68 0.64 0.60	groups of cables, mm 2 3 4 5 6 8 0 (touching) 0.79 0.69 0.63 0.58 0.55 0.50 70 0.85 0.75 0.68 0.64 0.60 0.56			

The values apply to groups of three single core cables (in trefoil or flat formation) without or with spacing between the cable groups horizontally placed.

Table 2. Correction factors for different thermal resistivities of soil

Thermal resistivity of soil Km/W	0.7	1.0	1.2	1.5	2.0	2.5	3.0
Correction factor	1.10	1.00	0.92	0.85	0.75	0.69	0.63

Examples of thermal resistivities of soil:

- dry sand (moisture content 0%)
- dry gravel and clay
- 3.0 K m/W
- semi-dry gravel and sand (moisture content 10%)
- semi-dry and moist gravel

Numbers of groups of single core cables, beside each other

- moist clay and sand (moisture content 25%)
- 1.2 K m/W 1.0 K m/W 0.7 K m/W

Table 3.
Correction
factors for
different
installation
depths in ground

Depth of laying, m	0.50-0.70	0.71-0.90	0.91-1.10	1.11-1.30	1.31-1.50
Rating factor	1.05	1.02	1.00	0.97	0.95

Table 4.
Correction
factors for
different ground
temperatures

	Conductor tempera	ature			Ground temperature, C°									
	C°	-5	0	5	10	15	20	25	30	35	40	45		
	90	1.13	1.10	1.06	1.03	1.00	0.96	0.93	0.89	0.86	0.82	0.77		
d	80	1.14	1.11	1.07	1.04	1.00	0.96	0.92	0.88	0.83	0.78	0.73		
	70	1.17	1.13	1.09	1.04	1.00	0.95	0.90	0.85	0.80	0.73	0.67		
	65	1 18	1 14	1.10	1.05	1.00	0.95	0.89	0.84	0.77	0.71	0.63		

Table 5.
Correction
factors for
different cables
in unfilled
plastic pipes

	Spacing between									
	the tubes, mm	1	2	3	4	5	6	8	10	
	0 (touching)	0.80	0.75	0.65	0.60	0.60	0.55	0.55	0.50	
5	70		0.75	0.70	0.65	0.60	0.60	0.55	0.55	
	250		0.75	0.70	0.70	0.70	0.65	0.65	0.65	

For parallel ducts with a group of three single core cables in each and with the cables equally loaded the current-carrying capacity indicated on pages 8 to 14 for cables buried directly in ground shall be reduced by correction factors given above.

The reduction in current carrying capacity can be avoided if the pipes after cable pulling are filled with material thermally equal to the ambient ground.

If factors in table 5 are used, factors in table 1 are not applicable.

Table 6.
Correction
factors for
different ambient
air temperatures

	Conductor temperature				An	nbient air te	emperature,	C			
	C°	10	15	20	25	30	35	40	45	50	55
	90	1.12	1.08	1.04	1.00	0.95	0.90	0.85	0.80	0.74	0.68
mbient	80	1.14	1.09	1.05	1.00	0.95	0.89	0.84	0.77	0.69	0.61
atures	70	1.18	1.12	1.06	1.00	0.93	0.86	0.79	0.71	0.62	0.52
	65	1.20	1.14	1.07	1.00	0.93	0.85	0.77	0.68	0.57	0.45

Table 7.
Correction
factors for
different groups
of three single
core cables
laid in the air

This applies only when the cable temperature does not affect the ambient air temperature.

Number of groups			Cables laid in flat formation Spacing = One cable diameter (d). Distance from the wall not less than 20 mm.				Cables laid in trefoil formation Spacing = Two cable diameters (2d). Distance from the wall not less than 20 mm.			
0 "	Number of groups		2	2 3 20 mm		1 2 3 20 mm ► 2d ►				
		Correction factor				Correction factor				
On floor		0.92	0.89	0.88		0.95	0.90			
	Number of trays				20 mm				20 mm 2d 2d	
On metal trays (restricted air circulation)	1	0.92	0.89	0.88	00000	0.95	0.90	0.88	8 8 8 ,	
	2	0.87	0.84	0.83	0.3 m	0.90	0.85	0.83	9 9 9 0.3 m	
	3	0.84	0.82	0.81		0.88	0.83	0.81		
	6	0.82	0.80	0.79	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$	0.86	0.81	0.79		
On metal ladders	Number of ladders				20 mm				20 mm 2d 2d	
	1	1.00	0.97	0.96	0000	1.00	0.98	0.96	8 8 8 ,	
	2	0.97	0.94	0.93		1.00	0.95	0.93	90 90 90 1	
	3	0.96	0.93	0.92	0 0 0 0 0 A	1.00	0.94	0.92		
	6	0.94	0.91	0.90		1.00	0.93	0.90	& & & *	
Arrangements where reduction of current is not necessary			The cooling of cables in flat formation by increased spacing will get better while the losses in metallic screens and sheaths will increase reducing the current-carrying capacity. Each case must be calculated separately.				20 mm 4d 2d 4			
Systems placed on top of each other On structures or on wall					20 mm			3 actor 0.84	© v 2d © ^	
	Arrangements where redu of current is not necessar Systems placed on top	On metal ladders 1 2 3 6 Arrangements where reduction of current is not necessary Systems placed on top of each other	On metal ladders 1 1.00 2.0.97 3 0.96 6 0.94 Arrangements where reduction of current is not necessary Systems placed on top of each other 1 Corr.	On metal ladders 1 1.00 0.97 0.97 0.94 3 0.96 0.93 6 0.94 0.91 Arrangements where reduction of current is not necessary The cooling of the losses in will increase of the losses in will increase reapacity. Each separately. Systems placed on top of each other 1 2 Correction f	On metal ladders 1 1.00 0.97 0.96 0.93 0.96 0.93 0.96 0.93 0.92 0.94 0.91 0.90 Arrangements where reduction of current is not necessary The cooling of cables by increased spacing the losses in metallic will increase reducing capacity. Each case in separately. Systems placed on top of each other 1 2 3 Correction factor	On metal ladders 1 1.00 0.97 0.96 2 0.97 0.94 0.93 3 0.96 0.93 0.92 6 0.94 0.91 0.90 The cooling of cables in flat formation by increased spacing will get better while the losses in metallic screens and sheaths will increase reducing the current-carrying capacity. Each case must be calculated separately.	On metal ladders 1 1.00 0.97 0.96 2 0.97 0.94 0.93 3 0.96 0.93 0.92 6 0.94 0.91 0.90 The cooling of cables in flat formation by increased spacing will get better while the losses in metallic screens and sheaths will increase reducing the current-carrying capacity. Each case must be calculated separately. Systems placed on top of each other 1 2 3 Correction factor 1 1.00 0.97 0.96 0 0 0 0 1.00 1.00 1.00 1.00 1.00 1.00 1	On metal ladders 1 1.00 0.97 0.96 2 0.97 0.94 0.93 3 0.96 0.93 0.92 6 0.94 0.91 0.90 The cooling of cables in flat formation by increased spacing will get better while the losses in metallic screens and sheaths will increase reducing the current-carrying capacity. Each case must be calculated separately. Systems placed on top of each other 1 2 3 Correction factor 1 1.00 0.98 1.00 0.93 1.00 0.95 1.00 0.94 1.00 0.93	On metal ladders 1 1.00 0.97 0.96 2 0.97 0.94 0.93 3 0.96 0.93 0.92 6 0.94 0.91 0.90 The cooling of cables in flat formation by increased spacing will get better while the losses in metallic screens and sheaths will increase reducing the current-carrying capacity. Each case must be calculated separately. Systems placed on top of each other 1 2 3 Correction factor 1 1.00 0.98 0.96 1.00 0.95 0.93 1.00 0.94 0.92 1.00 0.93 0.90 20 0 0 0 0 1 1.00 0.98 0.96 1.00 0.95 0.93 1.00 0.94 0.92 1.00 0.93 0.90	